

Briefing Purpose

- To introduce the flight test assets and evaluation capabilities at NASA Langley
- Pursue areas of mutually beneficial working arrangements

Simulation-to-Flight Research

Simulation

Common:

- Researchers
- Hardware/Software
- Data Systems

Flight

- Research Flight Deck
- Integration flight Deck
- System Integration Labs
- Cockpit Motion Facility
- Differential Maneuvering Simulator

Efficient, synergistic, & realistic aircraft safety and airspace research capability

Research

- Ideas
- Concepts
- Technology
- Constructs (Systems)

- Aircraft
- Instrumentation development and integration
- Research system test and evaluation
- Flight Ops Support Center

Langley Research Center

Science Platform - LaRC King Air B200

Altitude	35,000 ft (10.7 km), maximum				
	28,000 ft, nominal operating				
Range	800 nmi (1,300 km) at sampling				
	speed				
Endurance	4+ hr, maximum (with IFR				
	reserve)				
Speed	259 KIAS (133 m/s) cruise				

Payload	2500 lb (1,136 kg), maximum 500 lb (227 kg), with full fuel
Nadir port	Fwd: 29.5 in. x 29.25 in.
(2)	Aft: 26.75 in. x 22.5 in.
Electrical	(3)1400 W inverters, each supply
Power	115 V AC, 10 A

Standard 19 in. rack, approx. 4 ft tall

4 down looking optical remote sensing instruments: width 19 in., length 30 in., and height 34 in.

Rockwell OV-10A Bronco

Main body of tank 61 in. long, 18-in. diameter

- Twin turboprop aircraft with tandem seating (non-pressurized)
- Fully aerobatic capable
- Reconfigurable aft cockpit for researcher/test subject with displays and controls
- Data acquisition system and telemetry available
- 75-cu.ft cargo bay
- Downward-looking capabilities with wing and centerline hard points for pods and equipment mounting

Flight Operations Support Center

Flight Control Room

Data Acquisition and Processing Station

Coming Soon

- Unmanned Aerial Systems operations are a new frontier with much work to do
 - Procedures airspace, air traffic control, safety
 - People build acceptance, trust within all facets of aviation
 - Systems detect-and-avoid, lost link, reliable on-board systems

- Developing new and unique Unmanned Aerial Vehicle (UAV) Test and Evaluation capability
 - A remote and autonomously controlled capability using a General Aviation aircraft
 - On-board safety pilot allows for easy access to the airspace system.

"Solutions must be thoroughly modeled/tested and reliably demonstrate Equivalent Level of Safety"

"One Stop Shop for Flight Test Research"

Unique Technical Expertise

- Electronic, hardware/structural, and software engineering for aircraft modification
- Mechanical and electromagnetic effects engineering, thermal analysis, and data acquisition
- Airworthiness engineers to certify modifications and conduct hazards analysis
- Maintenance and fabrication technicians
- Quality assurance specialists
- Flight crew and mission planning and operations

Flight Platforms (6)

Systems
Integration Labs (2)

Fabrication Lab

NASA-Langley Aircraft Parameters

Aircraft	Service Ceiling, ft	Normal Cruise Speed, knots	Duration, hr	Payload, lbs	Cost Per Flight Hour, \$ (a)
B200	35,000	220	4	1000	1650
Cessna 206	15,700	142	6.7	1432	325
Cirrus SR22	17,500	180	6.1	1150	325
Lancair LC-40	14,000	200	5	279	325
OV-10A	26,000	180	3.5	4000 (b)	2000
UH-1H	14,000	110	1.6	1900	1650

Notes: (a) Includes flight planning, flight crew, and aircraft maintenance, does not include system integration;

(b) 3600 lbs can be external located in an external pod;

Flight Tested and Evaluated

Aviation "Weather Channel"

Audio Guidance

Atmospheric modeling and insitu measurements

Lunar/Mars Lander radar systems

Synthetic Vision - Clear Skies
All the Time

Attention
Distribution
Research 10

Summary

- LaRC has uniquely skilled and experienced personnel to support R&D remote sensing flight validation and operation platform work
- Ability to meet research needs through dedicated resources
- Demonstrated efficiency and rapid response to meet customer needs
- Cost effective flight assets
- Proven domestic and international planning and operating capability
- NASA LaRC Science and Aeronautics personnel research facilities in close proximity

"One Stop Shop for Flight Test Research"

Contacts

How To Do Business With Langley

National Aeronautics and Space Administration

Frank P. Jones

Associate Director
Research Services Directorate

NASA Langley Research Center Mail Stop 255A Bldg. 1244 Rm. 240A Hampton, Virginia 23681 Office: (757) 864-5271 Cell: (757) 303-1151 Fax: (757) 864-8549 Frank.P.Jones@nasa.gov National Aeronautics and Space Administration

Bruce D. Fisher

Directorate Chief Engineer Research Services Directorate

 NASA Langley Research Center

 Mail Stop 255A
 Office: (757) 864-3862

 Bldg. 1244 Rm. 242
 Fax: (757) 864-8549

 Hampton, Virginia 23681
 Bruce.D.Fisher@nasa.gov

If you have further questions today, please see a Partnership Consultant (look for a Bright Yellow badge) or visit the booth on